If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+12=84
We move all terms to the left:
3x^2+12-(84)=0
We add all the numbers together, and all the variables
3x^2-72=0
a = 3; b = 0; c = -72;
Δ = b2-4ac
Δ = 02-4·3·(-72)
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{6}}{2*3}=\frac{0-12\sqrt{6}}{6} =-\frac{12\sqrt{6}}{6} =-2\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{6}}{2*3}=\frac{0+12\sqrt{6}}{6} =\frac{12\sqrt{6}}{6} =2\sqrt{6} $
| 2x^2-15x+31=13 | | -8x+(-32)=40 | | 13(4x+17)=-25(x-3) | | 9x²+24=345 | | -16=4-5w | | 5(-2x+6)=-14(x-3) | | 9x²+24x=345 | | -2p-33=-19 | | -4(6-8x)=52 | | x+x+0.20+x+0.20+0.30=10.66 | | 8.4x-16.9=-0.1 | | -20y−-18y+19y−18y=-16 | | 20(2x+10)=37(x-4) | | 8x+6=190 | | 3(x+1)=7x-17 | | 9x*2+24x=345 | | 17(-3x-16)=31(x+3) | | 11=6f-7 | | 3(4+2)+4=5(u-1)+u | | 544.5=4.5x^2 | | =−323w5w | | 7x+3=7(2)+3 | | (5k+6)(3k+8)=0 | | 4c+3c+3c-10c+4c=12 | | 4x+12=7x+12 | | 16(-13x-18)=36(x+2) | | 4c+3c+3c−10c+4c=12 | | 3(2)^x=768 | | 35+y=27 | | t/8+4=16 | | 2/3(5=a)=2 | | 4x-2(2x-3)=13 |